The Crystal and Molecular Structure of Titanium Tetramethoxide

By D.A.Wright and D.A. Williams
Australian Defence Scientific Service, Department of Supply, Defence Standards Laboratories, Melbourne, Australia

(Received 24 August 1967 and in revised form 21 November 1967)

Abstract

Titanium tetramethoxide, empirical formula $\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{4}$, crystallizes in the triclinic space group $\mathrm{P} \overline{\mathrm{I}}$; $a=9 \cdot 09, b=10 \cdot 62, c=10 \cdot 62 \AA ; \alpha=101 \cdot 2, \beta=123 \cdot 2, \gamma=102 \cdot 1^{\circ}$ and $D_{m}=1 \cdot 496 \mathrm{~g} . \mathrm{cm}^{-3}$. The structure has been solved by three-dimensional Patterson and Fourier syntheses and shown to consist of discrete tetrameric molecules, $\mathrm{Ti}_{4}\left(\mathrm{OCH}_{3}\right)_{16}$. Least-squares refinement reduced R to 0.139 for data consisting of 1285 reflexions from room temperature $\mathrm{Cu} K \alpha$. Weissenberg photographs. The molecule consists of four titanium-oxygen octahedra surrounded by the terminal methyl groups, with methoxide oxygen bridges linking the titanium atoms. Titanium-oxygen bond lengths occur in several groups with their mean values ranging from 1.78 to $2 \cdot 20 \AA$. The standard deviations of the atomic positions are, for titanium 0.01 , oxygen 0.02 and carbon $0.04 \AA$ excepting two carbon atoms with larger standard deviations of $0 \cdot 10 \AA$ due to partial hydrolysis of their methoxide groups.

Introduction

The interest shown in the structure, synthesis and properties of the titanium alkoxides has lead to efficient methods for their preparation (Dunn, 1959) and to crystal structure studies on titanium tetraethoxide (Ibers, 1963) and monomethyltriethyl titanate (Witters \& Caughlan, 1965). These crystal structures show an arrangement of the titanium and oxygen atoms into a formally tetrameric unit, $\mathrm{Ti}_{4} \mathrm{O}_{16}$. By contrast titanium tetraethoxide and many similar compounds were originally reported to have trimeric molecules in solution (Caughlan, Smith, Katz, Hodgson \& Crowe, 1951; Bradley, Mehrotra, Swanwick \& Wardlaw, 1953) although evidence (Martin \& Winter, 1963) has been subsequently presented that some tetramer is present in concentrated solutions of titanium tetraethoxide in benzene. In general, titanium alkoxides are probably tetrameric when crystalline but consist of predominantly lower polymeric forms in solution.

The simplest titanium alkoxide, titanium tetramethoxide, has a melting point of $216^{\circ} \mathrm{C}$, which is much higher than many other titanium alkoxides (Dunn, 1959). Moreover in highly concentrated solutions in pure dry toluene almost 90% of the molecular entities present are tetramers. Thus this compound is a particularly stable member of the series, and with the high melting point as an indication of increased probability of locating the carbon atoms, a step not previously achieved in this class of compound (Ibers, 1963; Witters \& Caughlan, 1965), it was decided to determine the crystal structure.

Preparation

The titanium tetramethoxide was synthesized by adding methanol to a solution of titanium tetrachloride in dry redistilled toluene, later saturating the solution with
ammonia and distilling off the surplus methanol (Dunn, 1959). This gave a 64% yield of titanium tetramethoxide which was precipitated as transparent crystals with a slight brown tint. The compound was easily recrystallized from toluene on standing in the cold box of a refrigerator at $-5^{\circ} \mathrm{C}$ and the resulting crystals appear to remain stable indefinitely when stored under the mother liquor or in a desiccator. A sample made in 1955 gave identical X-ray powder patterns in 1955 and 1963 and the mass spectrum obtained in 1966 agreed with one made two years before.
Additional checks to determine that the crystals were not appreciably hydrolysed were made by using mass spectrometer and infrared data. Neither showed any evidence of hydrolysis. The only peak in the mass spectrum corresponding to a molecular weight greater than 100 and possibly due to a fragment from a partially hydrolysed molecule, $\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{OH}$ of M.W. 127, was shown to be probably derived from the fragment $\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{3} \mathrm{H}$ of M.W. 142 by electron impact causing the loss of CH_{3}. In an attempt to detect polymerization of the molecules a careful check was made of all peaks greater than 172, the M.W. of $\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{4}$. No evidence of the tetramer, trimer or dimer was found at 688, 516 or 344. However, a peak at 312, equivalent to $\mathrm{Ti}_{2}\left(\mathrm{OCH}_{3}\right)_{7}(-\mathrm{H})$ was found, and from the small size of this peak it was expected that the dimer peak would not be observed above the background. Several other peaks, such as $\mathrm{Ti}_{2}\left(\mathrm{OCH}_{3}\right)_{6}$ and $\mathrm{Ti}_{2} \mathrm{O}\left(\mathrm{OCH}_{3}\right)_{5}$ were found. The spectrum gave strong evidence for some polymerization of the tetramethoxide in the vapour phase and for the crystals being a very slightly hydrolysed or non-hydrolysed form of $\left[\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{4}\right]_{n}$.

Infrared absorption spectra of the tetramethoxide taken both in the solid state and in a solution of carbon disulphide were very similar and it is likely that the same molecular species is present in both solid and solute. Some spectral lines were split, indicating the
presence of a polymer. All the peaks were consistent with those expected from $\mathrm{Ti}_{4}\left(\mathrm{OCH}_{3}\right)_{16}$.

Crystal mounting

Considerable precautions were necessary to protect the crystals from hydrolysis. Small crystals suitable for X-ray photography, usually rhombohedra or needles elongated along the [100] direction, were simply jammed into Lindemann glass capillary tubes since all adhesives used caused decomposition. The crystals were mounted in an atmosphere of very dry nitrogen after it was found that carbon dioxide also caused them to decompose.

Although the crystals were stable for long periods of time ($1-2$ months) in sealed tubes, any slow air leaks caused them to lose crystallinity quickly and become gels while still retaining their original shape. The crystal structure determination showed that hydrolysis was not suppressed completely, but there was no direct evidence of change in the crystals during photography.

Crystal data

The cell constants were determined from room temperature $\mathrm{Cu} K \alpha$ oscillation and zero layer-line Weissenberg X-ray photographs.

The cell is triclinic with the following constants:

$$
\begin{aligned}
a & =9 \cdot 09 \pm 0 \cdot 02 \AA & \alpha & =101^{\circ} 13^{\prime} \pm 12^{\prime} \\
b & =10 \cdot 62 \pm 0 \cdot 02 & \beta & =123^{\circ} 14^{\prime} \pm 12^{\prime} \\
c & =10 \cdot 62 \pm 0 \cdot 02 & \gamma & =102^{\circ} 06^{\prime} \pm 12^{\prime} \\
V & =774 \cdot 12 \AA^{3} & D_{\text {meas }} & =1 \cdot 496 \mathrm{g.cm}^{-3} \\
Z & =4 & D_{\text {calc }} & =1 \cdot 476 \text { g.cm }
\end{aligned}
$$

The space group was shown to be the centrosymmetric group $P \overline{1}$ by the statistical test of Howells, Phillips \& Rogers (1950) and hence the unit cell has two crystallographically independent $\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{4}$ units. It was considered likely that these formed part of a centrosymmetric molecule $\mathrm{Ti}_{4}\left(\mathrm{OCH}_{3}\right)_{16}$, the contents of the entire unit cell.

Photography

The intensity measurements were taken from $\mathrm{Cu} K \alpha$ X-ray diffraction photographs of crystals having a nearly cubic shape with an edge of approximately 0.2 mm . It was necessary to use $\mathrm{Cu} K \alpha$ radiation as crystals suitable for Mo K α photography at room temperature could not be obtained (the largest crystals had dimensions of about 0.3 mm) and low temperature equipment was not available to us at the time. The high absorption of Cu radiation by the titanium atoms led to considerable errors in the observed structure factors and to a relatively heavy background. Data were collected out to about $\sin \theta=0.90$ for the Cu sphere using the equi-inclination Weissenberg method. Within the effective sphere of reflection approximately 72% of the intensities were measured by visual com-
parison with a standard scale. After the Lorentzpolarization corrections were made the intensities were placed on a single (arbitrary) scale.

Determination of the structure

Patterson vector synthesis

The intensities were placed on an absolute scale and the overall isotropic temperature factor (B) found by using a slight modification of Wilson's (1942) method. A sharpened Patterson synthesis was then calculated in which the absolute intensities were modified by the function $(\sin \theta / \lambda) \exp \left(2 B \sin ^{2} \theta / \lambda^{2}\right)$ (Abrahamsson \& Maslen, 1963). The origin peak was not removed. The other four titanium-titanium vector peaks were readily identified in the Patterson vector map, and the titanium atoms located. A subsequent attempt to use the Patterson superposition technique was abandoned as it led to a confusing set of peaks, probably due to the relatively large errors in the structure factors.

Determination of atom positions

The titanium atom coordinates were used to calculate a set of structure factors which showed an excellent trend of agreement with the observed structure factors, and gave an R value of 0.47 (where $R=$ ($\left.\Sigma\left|F_{\text {obs }}-\left|F_{\text {calce }}\right|\right) / \Sigma F_{\text {obs }}\right)$. Two hundred of the largest structure factors that were sign-determined were used as input to an initial electron density map calculated with the Fortran program MUFR (White, 1966). Though much false detail appeared sixteen peaks were selected as possible sites for the oxygen and carbon atoms, and later analysis showed that the distorted octahedra of oxygen atoms surrounding each titanium atom had been correctly identified, but that only two carbon peaks had been found. The correct light atom (non-titanium) positions were distinguished from other Fourier peaks by the stability of their isotropic temperature factors when refined with their coordinates using the Fortran II least-squares refinement program ORFLS (Busing, Martin \& Levy, 1962) adapted for the CDC 3600 computer. The function $\Sigma W\left(k F_{o}-\left|F_{c}\right|\right)^{2}$ was minimized and the atomic scattering factors were taken from International Tables for X-ray Crystallography (1962). An atom was rejected when an excessively large temperature factor was derived for it during several refinement cycles. The first four cycles clearly rejected the six false atoms and reduced R from 0.46 to 0.33 .

A model constructed from transparent plastic sheets separated by foam plastic spacers now showed the $\mathrm{Ti}_{4} \mathrm{O}_{16}$ tetrameric unit of four distorted octahedra. A straightforward sequence of Fourier and difference Fourier calculations interspersed with cycles of leastsquares refinement, in which the reflexions were weighted individually, identified the remaining carbon atoms. The isotropic temperature factor refinement reduced R to 0.17 but did not resolve the two carbon atoms $C(4)$ and $C(5)$ properly from the oxygen atoms

Table 1. Observed and calculated structure factors
The three columns within each group contain the values of l (or k), $10 F_{o}$ and $10 F_{c}$. Reflexions indicated by an asterisk were given zero weight in the least-squares calculation.

to which they are bonded. Allowance was made for the anomalous scattering of the titanium atoms but it made no significant difference to the R value.

Anisotropic refinement

Several cycles of least-squares refinement in which the titanium and oxygen atoms were given variable
anisotropic temperature factors completed the structure determination. Initially an attempt was made to refine anisotropic temperature factors for the carbon atoms. This led to very elongated ellipsoids of vibration for five of the eight carbon atoms, two normal ellipsoids and one which did not refine realistically. It was therefore decided to give each carbon atom the

Table 2. Positional and thermal parameters for the titanium, oxygen and carbon atoms
The $b_{i j}$ are defined by: $T=\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right)\right]$.
Estimated standard deviations $\times 10^{+4}$ are in brackets.

	x	y	z	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Ti(1)	0.5117 (05)	$0 \cdot 2905$ (03)	0.2914 (03)	0.0240 (07)	0.0102 (02)	0.0141 (03)	$0 \cdot 0054$ (05)	0.0121 (04)	0.0013 (02)
Ti(2)	0.5171 (05)	$0 \cdot 6098$ (03)	$0 \cdot 4060$ (03)	0.0252 (07)	0.0107 (02)	$0 \cdot 0147$ (03)	0.0086 (04)	0.0130 (04)	$0 \cdot 0060$ (02)
$\mathrm{O}(1)$	0.3654 (21)	0.5926 (13)	$0 \cdot 2035$ (12)	0.0585 (51)	0.0271 (20)	$0 \cdot 0169$ (16)	0.0284 (31)	0.0223 (27)	$0 \cdot 0150$ (16)
$\mathrm{O}(2)$	$0 \cdot 6981$ (18)	0.7718 (09)	$0 \cdot 4887$ (15)	0.0439 (41)	0.0092 (11)	0.0454 (31)	0.0107 (22)	0.0378 (32)	0.0116 (16)
$\mathrm{O}(3)$	$0 \cdot 7011$ (15)	$0 \cdot 2460$ (11)	$0 \cdot 3048$ (12)	0.0243 (28)	0.0145 (13)	0.0214 (18)	0.0064 (21)	0.0147 (21)	-0.0004 (13)
$\mathrm{O}(4)$	$0 \cdot 3612$ (17)	$0 \cdot 2836$ (13)	0.0633 (13)	0.0351 (37)	0.0199 (17)	0.0225 (20)	0.0108 (27)	0.0195 (25)	0.0034 (16)
$\mathrm{O}(5)$	0.3388 (15)	0.0904 (15)	$0 \cdot 2268$ (12)	0.0184 (24)	0.0295 (22)	0.0182 (17)	0.0085 (25)	0.0117 (18)	0.0026 (17)
O (6)	$0 \cdot 6570$ (13)	$0 \cdot 5020$ (08)	0.3812 (09)	0.0189 (22)	0.0091 (09)	$0 \cdot 0137$ (12)	0.0049 (16)	0.0122 (15)	0.0042 (09)
$\mathrm{O}(7)$	$0 \cdot 3667$ (14)	0.6719 (09)	$0 \cdot 4648$ (10)	0.0192 (24)	0.0130 (11)	0.0141 (13)	0.0089 (18)	0.0105 (16)	0.0065 (10)
$\mathrm{O}(8)$	0.3965 (13)	$0 \cdot 4002$ (08)	0.3588 (08)	0.0194 (23)	0.0092 (09)	0.0107 (11)	0.0062 (16)	0.0088 (15)	$0 \cdot 0030$ (08)
C(1)	$0 \cdot 3035$ (33)	$0 \cdot 5993$ (22)	$0 \cdot 0530$ (25)	0.0424	0.0224	0.0309	0.0120	0.0223	0.0101
C(2)	0.7705 (33)	$0 \cdot 8971$ (22)	$0 \cdot 4829$ (25)	0.0438	0.0232	0.0319	0.0124	0.0230	0.0104
C(3)	0.7252 (29)	$0 \cdot 1499$ (19)	$0 \cdot 2162$ (21)	0.0353	0.0187	0.0257	0.0100	0.0185	0.0084
C(4)	0.7790 (50)	$0 \cdot 7940$ (50)	0.0790 (50)	0.0536	0.0284	0.0390	0.0152	0.0282	0.0128
C(5)	0.2170 (100)	$0 \cdot 9830$ (100)	$0 \cdot 1330$ (100)	0.0536	0.0284	0.0390	0.0152	0.0282	0.0128
C(6)	0.7921 (24)	0.5484 (15)	0.3526 (17)	0.0251	0.0133	0.0183	$0 \cdot 0071$	0.0132	$0 \cdot 0060$
C(7)	$0 \cdot 2305$ (28)	$0 \cdot 7279$ (18)	0.3776 (20)	0.0322	0.0170	0.0234	$0 \cdot 0091$	0.0169	$0 \cdot 0077$
C(8)	$0 \cdot 1568$ (21)	0.3487 (13)	$0 \cdot 2432$ (15)	0.0201	0.0106	0.0147	0.0057	0.0106	$0 \cdot 0048$

Table 3. Bond lengths and estimated standard deviations

	Uncorrected bond lengths (A)		Corrected for thermal motion (Atoms riding) (Å)	
Oxygen atoms bonded to 1 titanium atom		σ		σ
$\mathrm{O}(1)-\mathrm{Ti}(2)$	1.745	0.009	$1 \cdot 786$	0.010
$\mathrm{O}(2)-\mathrm{Ti}(2)$	1.751	0.010	1.780	0.011
$\mathrm{O}(3)-\mathrm{Ti}(1)$	1.818	0.013	1.835	0.013
$\mathrm{O}(4)-\mathrm{Ti}(1)$	1.999	0.011	2.015	0.012
$\mathrm{O}(5)-\mathrm{Ti}(1)$	2.072	$0 \cdot 014$	2.078	0.014
Oxygen atoms bonded to 2 titanium atoms				
$\mathrm{O}(6)-\mathrm{Ti}(1)$	2.054	0.008	2.048	0.008
$\mathrm{O}(6)-\mathrm{Ti}(2)$	1.963	0.010	1.959	0.010
$\mathrm{O}(7)-\mathrm{Ti}\left(1^{\prime}\right)$	2.086	0.009	2.084	0.009
$\mathrm{O}(7)-\mathrm{Ti}(2)$	1.960	$0 \cdot 011$	1.961	$0 \cdot 011$
Oxygen atoms bonded to 3 titanium atoms				
$\mathrm{O}(8)-\mathrm{Ti}(1)$	2.202	0.010	2.196	0.010
$\mathrm{O}(8)-\mathrm{Ti}(2)$	$2 \cdot 138$	0.008	2.134	0.009
$\mathrm{O}(8)-\mathrm{Ti}\left(2^{\prime}\right)$	2.155	0.008	$2 \cdot 151$	0.008
Oxygen-carbon bonds				
$\mathrm{O}(1)-\mathrm{C}(1)$	$1 \cdot 398$	0.022	1.384	0.023
$\mathrm{O}(2)-\mathrm{C}(2)$	$1 \cdot 385$	0.022	1.388	0.023
$\mathrm{O}(3)-\mathrm{C}(3)$	$1 \cdot 383$	0.022	$1 \cdot 382$	0.023
$\mathrm{O}(4)-\mathrm{C}\left(4^{\prime}{ }^{*}\right.$	$1 \cdot 241$	0.050	$1 \cdot 277$	0.050
$\mathrm{O}(5)-\mathrm{C}(5)^{*}$	$1 \cdot 152$	$0 \cdot 100$	1.186	$0 \cdot 100$
$\mathrm{O}(6)-\mathrm{C}(6)$	1.435	0.019	1.446	0.019
$\mathrm{O}(7)-\mathrm{C}(7)$	$1 \cdot 420$	0.021	1.438	0.021
$\mathrm{O}(8)-\mathrm{C}(8)$	$1 \cdot 494$	0.016	1.500	0.016

* Carbon atoms belonging to partially hydrolysed methoxide groups.
temperature factor derived for it in the final cycle of isotropic least-squares refinement, and to hold it constant. After two more refinement cycles and inspection of Fourier and difference Fourier syntheses it was clear that the atoms $C(4)$ and $C(5)$ were in partially hydrolysed methoxide groups. By trial and error with a sequence of Fourier and difference Fourier syntheses the population parameters were estimated as 0.75 for $C(4)$ and 0.50 for $C(5)$. Their coordinates were also obtained and not varied in subsequent refinement cycles which now converged rapidly.

Table 1 lists the observed structure factors and the structure factors calculated after the final refinement cycle in which the variables were an overall scale factor, coordinates of all atoms except $C(4)$ and $C(5)$, and anisotropic thermal parameters for titanium and oxygen atoms. The largest parameter shift in the final refinement cycle was 30% of its standard deviation and the final R value was 0.139 for 1285 reflexions or 0.133 with the unobserved reflexions excluded. The weighting factor used was $1 / F_{\text {obs }}{ }^{2}$, with a maximum value of $1 /\left(2 \cdot 25 F_{\min }\right)^{2}$ where $F_{\min }$ is the average minimum observable structure factor. Large reflexions with extinction effects and all unobserved reflexions calculating less than $F_{\min }$ were given zero weight. Unobserved reflexions calculating greater than $F_{\text {min }}$ were treated as though $F_{\text {obs }}=F_{\text {min }}$. The final atomic coordinates and their standard deviations calculated by the leastsquares refinement program are listed in Table 2. The bond lengths and bond angles within the molecule are given in Tables 3 and 4 respectively.

The mean separation of two atoms over their joint distribution cannot be calculated accurately as the correlation between their thermal displacements is not known. However, to improve on the uncorrected bond lengths the mean separation, assuming the lighter atom to be riding on the heavier atom, has also been calculated using the method of Busing \& Levy (1964). The bond lengths, bond angles and standard deviations were all calculated from the atomic positional and thermal parameters and their standard deviations. The function and error program ORFFE (Busing, Martin \& Levy, 1964) was used.

Fig. 1 shows the molecular structure and Fig. 2 the oxygen octahedra. Both Figures are computer-drawn stereoscopic views using the program ORTEP (Johnson, 1965) with the ellipsoids representing the volume in which there is 30% probability of including the atom. Anisotropic temperature factors were used for the titanium and oxygen atoms and isotropic temperature factors were used for the carbon atoms.

In an attempt to determine whether significant errors had been introduced because the carbon temperature factors had not been varied anisotropically a cycle of refinement was calculated varying positional and anisotropic thermal parameters for all atoms. The vibration parameters derived for the carbon atoms had standard deviations that were about twice those for the oxygen atoms and the ellipsoids were physically

Table 4. Bond angles and estimated standard deviations

Angle	θ	$\sigma(\theta)$
$\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}(4)$	$99.6{ }^{\circ}$	$0.5{ }^{\circ}$
$\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}(5)$	96.4	0.5
$\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}(6)$	94.7	0.5
$\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}\left(7^{\prime}\right)$	93.7	0.5
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{O}(5)$	94.2	0.5
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{O}(6)$	90.7	$0 \cdot 4$
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{O}(8)$	94.5	0.4
$\mathrm{O}(5)-\mathrm{Ti}(1)-\mathrm{O}(8)$	$96 \cdot 7$	$0 \cdot 4$
$\mathrm{O}(5)-\mathrm{Ti}(1)-\mathrm{O}\left(7^{\prime}\right)$	89.2	0.4
$\mathrm{O}(6)-\mathrm{Ti}(1)-\mathrm{O}(8)$	70.7	$0 \cdot 4$
$\mathrm{O}(6)-\mathrm{Ti}(1)-\mathrm{O}\left(7^{\prime}\right)$	83.2	$0 \cdot 3$
$\mathrm{O}(8)-\mathrm{Ti}(1)-\mathrm{O}\left(7^{\prime}\right)$	71.4	$0 \cdot 4$
$\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}(8)$	159.9	$0 \cdot 4$
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{O}\left(7^{\prime}\right)$	165.7	0.5
$\mathrm{O}(5)-\mathrm{Ti}(1)-\mathrm{O}(6)$	166.9	0.5
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}(2)$	$100 \cdot 2$	$0 \cdot 6$
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}(6)$	97.7	0.5
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}(7)$	94.6	0.6
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}(8)$	$94 \cdot 5$	$0 \cdot 5$
$\mathrm{O}(2)-\mathrm{T}(2)-\mathrm{O}(6)$	94.2	$0 \cdot 5$
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{O}(7)$	99.0	0.5
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{O}\left(8^{\prime}\right)$	$93 \cdot 3$	0.5
$\mathrm{O}(6)-\mathrm{Ti}(2)-\mathrm{O}(8)$	73.8	$0 \cdot 4$
$\mathrm{O}(6)-\mathrm{Ti}(2)-\mathrm{O}\left(8^{\prime}\right)$	89.7	$0 \cdot 4$
$\mathrm{O}(7)-\mathrm{Ti}(2)-\mathrm{O}(8)$	89.6	$0 \cdot 4$
$\mathrm{O}(7)-\mathrm{Ti}(2)-\mathrm{O}\left(8^{\prime}\right)$	$74 \cdot 8$	$0 \cdot 4$
$\mathrm{O}(8)-\mathrm{Ti}(2)-\mathrm{O}\left(8^{\prime}\right)$	74.0	$0 \cdot 3$
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}\left(8^{\prime}\right)$	164.1	$0 \cdot 6$
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{O}(8)$	162.3	0.5
$\mathrm{O}(6)-\mathrm{Ti}(2)-\mathrm{O}(7)$	160.0	0.4
$\mathrm{Ti}(1)-\mathrm{O}(6)-\mathrm{Ti}(2)$	$112 \cdot 8$	0.5
$\mathrm{Ti}(1)-\mathrm{O}\left(7^{\prime}\right)-\mathrm{Ti}\left(2^{\prime}\right)$	111.5	0.5
$\mathrm{Ti}(1)-\mathrm{O}(8)-\mathrm{Ti}(2)$ $\mathrm{Ti}(1)-\mathrm{O}(8)-\mathrm{Ti}\left(2^{\prime}\right)$	$100 \cdot 9$ $100 \cdot 3$	0.4 0.4
$\mathrm{Ti}(2)-\mathrm{O}(8)-\mathrm{Ti}\left(2^{\prime}\right)$	106.0	$0 \cdot 3$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Ti}(2)$	$160 \cdot 6$	1.5
$\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{Ti}(2)$	$152 \cdot 4$	$1 \cdot 3$
$\mathrm{C}(3)-\mathrm{O}(3)-\mathrm{Ti}(1)$	140.0	$1 \cdot 1$
${ }^{*} \mathrm{C}\left(4^{\prime}\right)-\mathrm{O}(4)-\mathrm{Ti}(1)$	$142 \cdot 3$	1.8
* $\mathrm{C}(5)-\mathrm{O}(5)-\mathrm{Ti}(1)$	153.0	$3 \cdot 1$
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{Ti}(1)$	117.1	$0 \cdot 8$
$\mathrm{C}(6)-\mathrm{O}(6)-\mathrm{Ti}(2)$	124.3	0.8
$\mathrm{C}(7)-\mathrm{O}(7)-\mathrm{Ti}(2)$	125.7	1.0
$\mathrm{C}(7)-\mathrm{O}(7)-\mathrm{Ti}\left(1^{\prime}\right)$	$120 \cdot 0$	1.0
$\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{Ti}(2)$	114.7	0.7
$\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{Ti}(1)$	118.3	0.7
$\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{Ti}\left(2^{\prime}\right)$	$114 \cdot 6$	0.7

* Carbon atoms belonging to partially hydrolysed methoxide groups.
reasonable except for that of $\mathrm{C}(6)$. A stereoscopic diagram of these results drawn by ORTEP showed that for the atoms other than $\mathrm{C}(6)$ the major axes of the vibration ellipsoids were in directions consistent with the molecular structure. However, this refinement made no significant difference to the coordinates of Table 2. Some refinement cycles using unit weighting were calculated, reflexions suffering from extinction effects and unobserved reflexions were treated as previously, and again the results were essentially those of the final refinement. The contributions of the hydrogen atoms to the calculated structure factors were ignored throughout.

Results and discussion

The crystal structure of titanium tetramethoxide consists of discrete tetrameric molecules $\mathrm{Ti}_{4}\left(\mathrm{OCH}_{3}\right)_{16}$. Each
molecule has a crystallographic centre of symmetry as well as an apparent mirror plane of symmetry not implied by the space group. In Fig. 1 the viewing direction is nearly parallel to the mirror plane, the mean plane of the atoms $\mathrm{C}(8), \mathrm{O}(8), \mathrm{Ti}(1), \mathrm{O}(3), \mathrm{C}(3)$ and their centrosymmetric pairs. The titanium atoms are octahedrally coordinated to six oxygen atoms and linked through methoxide oxygen bridges. The four titaniumoxygen octahedra which may be seen in Fig. 2 share either two or three edges; the pair of atoms $O(8)$ and $O\left(8^{\prime}\right)$ are common vertices to three octahedra and two other pairs, $O(6)$ and $O\left(6^{\prime}\right)$, and $O(7)$ and $O\left(7^{\prime}\right)$, are common vertices to two octahedra.

As may be seen in Fig. 1 it is not meaningful to describe the molecular structure in terms of the em-
pirical formula $\mathrm{Ti}\left(\mathrm{OCH}_{3}\right)_{4}$. Agreeing with this, solutions of the tetramethoxide in dry toluene at moderate concentrations were found to contain 88% tetrameric molecules. Even at low concentrations the solutions still contained 60% tetrameric molecules, with 27% monomers and only very small percentages of dimer or trimer.

The two crystallographically independent titanium atoms have different coordinations of methoxide oxygen bridges and methoxide groups; $\mathrm{Ti}(2)$ is linked by four methoxide oxygen bridges to three titanium atoms while $\operatorname{Ti}(1)$ is linked by three bridges to two titanium atoms. Two of the singly coordinated methoxide groups are coordinated to $\mathrm{Ti}(2)$ and three to $\mathrm{Ti}(1)$. The $\mathrm{Ti}(1)$ atoms are not as centrally bonded within the molecule

Fig.1. A stereoscopic pair of drawings of the molecule viewed almost perpendicularly to the plane of the titanium atoms and almost parallel to the apparent mirror plane of symmetry.

Fig.2. A stereoscopic pair of drawings of the molecule with the titanium-oxygen octahedra outlined.
as the $\mathrm{Ti}(2)$ atoms, and have slightly more pronounced anisotropic thermal vibrations. As would be expected, the partially hydrolysed methoxide groups are coordinated to them. As no oxygen deficiency was found in the molecule the hydrolysed methoxide groups have apparently been replaced by hydroxide groups.

The expected upper limits of error in the bond lengths and angles, estimated as three times the standard deviation (σ) calculated by the least-squares analysis, are $0.03 \AA$ for titanium-oxygen bonds and $0.06 \AA$ for oxygen-carbon bonds, 1.4° for $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ or $\mathrm{O}-\mathrm{Ti}-\mathrm{O}$ angles and 3.0° for Ti-O-C angles. The high value of 3σ allows for the random errors and those caused by absorption and extinction effects. The difference between the angles $\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}(4)$ and $\mathrm{O}(3)-\mathrm{Ti}(1)-\mathrm{O}(5)$ and that between the lengths $\mathrm{O}(4)-\mathrm{Ti}(1)$ and $\mathrm{O}(5)-\mathrm{Ti}(1)$ are both about 6σ, which is a significant deviation from mirror symmetry. These comparisons involve both $\mathrm{O}(4)$ and $O(5)$ of the partly hydrolysed methoxide groups. The bond lengths and angles which include the partly present atoms $\mathbf{C}(4)$ and $\mathrm{C}(5)$ have limits of error about four times as large as those quoted for the other carbon atoms, and little significance can be attached to them.

The titanium-oxygen bond lengths may be grouped conveniently into the six categories of Table 5. In general the more titanium atoms coordinated to an oxygen atom the longer are its titanium-oxygen bonds, and where bonds are from oxygen atoms with the same titanium coordination a bond length to $\mathrm{Ti}(1)$ is always longer than an equivalent bond length to $\mathrm{Ti}(2)$, though it does not seem probable that there are simply two effective coordination radii for the titanium atoms. The titanium-oxygen bonds of $O(6)$ and $O(7)$ have an average bond length to $\operatorname{Ti}(1) 0 \cdot 11 \AA$ greater than that to $\mathrm{Ti}(2)$, a significant difference as $\sigma=0.010 \AA$ for these bonds. The bonds to $\mathrm{Ti}(1)$ from $\mathrm{O}(4)$ and $\mathrm{O}(5)$ are significantly longer than the similar bonds from the oxygen atoms of non-hydrolysed groups, the mean difference being $0.27 \AA$. These long bonds from $\mathrm{Ti}(1)$ are apparently due to the hydrolysis as the bond length $\mathrm{O}(3)-\mathrm{Ti}(1)$ is much shorter. The range of titaniumoxygen bond lengths, 1.75 to $2.20 \AA$, is considerable, and the four octahedra of the basic $\mathrm{Ti}_{4} \mathrm{O}_{16}$ units are appreciably distorted. Faces that would be parallel in a regular octahedron are inclined to each other at up

Table 5. Titanium-oxygen bond lengths

(Atoms riding, mean $\sigma=0.010$)		
Number of titanium atoms bonded to oxygen	$\begin{gathered} \text { Oxygen - Ti(1) } \\ \text { bond length } \\ (\AA) \end{gathered}$	$\begin{aligned} & \text { Oxygen - Ti(2) } \\ & \text { bond length } \\ & (\AA) \end{aligned}$
1	$\left\{\begin{array}{l}1.84 \\ 2.02 \\ 2.08\end{array}(1.98)\right.$	$\begin{aligned} & 1.79 \\ & 1.78(1.78) \end{aligned}$
2	$\left\{\begin{array}{l}2.05 \\ 2.08\end{array}\left(\begin{array}{l}\text { (2.07) }\end{array}\right.\right.$	${ }_{1.96}^{1.96}(1.96)$
3	$2 \cdot 20$ (2.20)	$\left\{\begin{array}{l} 2 \cdot 13 \\ 2 \cdot 15 \end{array}(2 \cdot 14)\right.$

(Atoms riding, mean $\sigma=0.010$)
Oxygen - Ti(1)
bond length $\begin{gathered}\text { Oxygen } \\ \text { bond length }\end{gathered}$
to 12°. Both Ibers (1963) and Witters \& Caughlan (1965) who found the titanium and oxygen atom positions in titanium tetraethoxide and monomethyltriethyltitanate reported the octahedral arrangement of the oxygen atoms in the tetramer and observed a similar range of $\mathrm{Ti}-\mathrm{O}$ bond lengths.
The carbon-oxygen bond lengths in the non-hydrolysed methoxide groups vary from 1.38 to $1.39 \AA$ when the oxygen is bonded to one titanium atom, 1.44 to $1.45 \AA$ when the oxygen is bonded to two titanium atoms and it is $1.50 \AA$ when the oxygen is bonded to three titanium atoms. The average distance between each carbon atom and its four nearest neighbours, $3.90 \AA$, is the expected van der Waals separation for methyl groups. The minimum separation of $3.77 \AA$ occurs between $C(2)$ and $C(6)$. Intermolecular packing is similarly efficient with $3.90 \AA$ the average close approach between carbon atoms. The shortest intermolecular approach not involving a hydrolysed carbon is $3.67 \AA$ from $\mathrm{O}(3)$ to $\mathrm{C}\left(6^{\prime}\right)$, while the minimum intermolecular approach is $3.53 \AA$ between $\mathbf{C}(5)$ and $\mathbf{C}\left(5^{\prime}\right)$. The close packing of the methyl groups appears to influence the Ti-O-C bond angles. For methoxide groups which are coordinated to only one titanium atom the Ti-O-C angles vary between 140.0° and $160 \cdot 6^{\circ}$, a range of $20 \cdot 6^{\circ}$, while the angles which include the doubly and triply coordinated methoxide groups vary by 8.6° and 3.7° respectively. These latter groups are much more rigidly held in position by titaniumoxygen bonds and not easily distorted from position by steric effects.

The thermal vibrations of the oxygen atoms are largest in directions normal to their bonds. The root mean square thermal displacements of the oxygen atoms have minimum values of about $0.18 \AA$ but the maximum value depends on the oxygen-titanium coordination number. The oxygen atoms coordinated to one titanium atom have maximum thermal displacements varying from $0.34 \AA$ for $\mathrm{O}(3)$ to $0.44 \AA$ for $\mathrm{O}(5)$. The maximum thermal displacements of $\mathrm{O}(6)$ and $\mathrm{O}(7)$ which are coordinated to two titanium atoms are 0.23 and $0.25 \AA$ respectively while $\mathrm{O}(8)$, which has tetrahedral coordination to $\mathrm{C}(8)$ and three titanium atoms, has a maximum thermal displacement of $0.23 \AA$ and these three oxygen atoms have nearly isotropic thermal motion. The refined anisotropic thermal parameters of the carbon atoms did not define an ellipsoid for $\mathrm{C}(6)$, and for $\mathrm{C}(5)$ in the half hydrolysed methoxide group, the major axis of its highly elongated ellipsoid was calculated to be in the direction of the $\mathrm{O}(5)$ atom.

We are grateful to many of our colleagues at D.S.L. for assistance during the course of this work which had been initiated by Dr K. A. Gross. In particular we thank Mr P.Dunn who synthesized the tetramethoxide and provided suitable crystals for the X-ray analysis, Mr J.L. Occolowitz and Mr J.T.Elias for several mass spectra, and Mr G.Cooper and Mr I.T.McDermott for collecting the X-ray data. We are also indebted to

Professor R.L. Martin and Dr G.Winter of the University of Melbourne for their continuing interest in this project and for many helpful discussions. Dr Winter measured the density of the crystals and also did the cryoscopic analysis. The calculations were done on the C.S.I.R.O. Computing Network and arranged through the Melbourne Computing Centre with excellent cooperation from their staff.

References

Abrahamsson, S. \& Maslen, E. N. (1963). Z. Kristallogr. 118, 1.
Bradley, D. C., Mehrotra, R. C., Swanwick, J. D. \& Wardlaw, W. (1953). J. Chem. Soc. p. 2025.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE: A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory Report, ORNL-TM-306.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS - A Fortran Crystallographic Least Squares Program. Oak Ridge National Laboratory Report, ORNL-TM-305.
Caughlan, C. N., Smith, H. S., Katz, W., Hodgson, W. \& Crowe, R. W. (1951). J. Amer. Chem. Soc. 73, 5652.
Dunn, P. (1959). Aust. J. Appl. Sci. 10, 458.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Ibers, J. A. (1963). Nature, Lond. 197, 686.
International Tables for X-ray crystallography (1962). Vol. III, p. 202-4. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP: A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations. Oak Ridge National Laboratory Report, ORNL 3794.
Martin, R. L. \& Winter, G. (1963). Nature, Lond. 197, 687.

White, J. C. B. (1966). MUFR-A Three Dimensional Fourier Synthesis Program. Univ. of Melbourne.
WILSON, A. J. C. (1942). Nature, Lond. 150, 151.
Witters, R. D. \& Caughlan, C. N. (1965). Nature, Lond. 205, 1312.

The Structure of $\mathbf{N a}_{4} \mathbf{M n}_{4} \mathbf{T i}_{5} \mathbf{O}_{18}$

By W. G. Mumme
Division of Mineral Chemistry, C.S.I. R.O., Melbourne, Australia

(Received 29 August 1967 and in revised form 6 November 1967)

Abstract

$\mathrm{Na}_{4} \mathrm{Mn}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$, formed at $1200^{\circ} \mathrm{C}$ by crystallization from the composition $\mathrm{NaMnTiO}_{4}$, is orthorhombic, with unit-cell dimensions $a=9 \cdot 268, b=26 \cdot 601, c=2.888 \AA . \mathrm{Mn}^{3+}$ and Ti^{4+} atoms occupy octahedral positions, while the coordination of another Mn^{3+} is a rectangular pyramid. In this structure, groups of octahedra, joined by extensive edge and corner sharing, are linked together by the five-coordinated Mn^{3+} to leave a series of tunnels for the sodium ions. One of these is a single tunnel similar to that found in calcium ferrite; the other is a much larger one and contains sites for four sodium ions, only half of which are filled. The chemical composition was deduced from this structure analysis.

Introduction

An investigation of a group of alkali-transition metal oxides of the form $\mathrm{NaA}^{3+} \mathrm{B}^{4+} \mathrm{O}_{4}$ (Reid, Wadsley \& Sienko, 1967) has shown that many of them, including $\mathrm{NaScTiO}_{4}, \mathrm{NaScZrO}_{4}, \mathrm{NaScHfO}_{4}, \mathrm{NaFeSnO}_{4}$, $\mathrm{NaScSnO}_{4}$ and $\mathrm{NaFeTiO}_{4}$ prepared below their melting points, are isomorphous with calcium ferrite. Another compound close to these in overall stoichiometry, $\mathrm{Na}_{0.9} \mathrm{Fe}_{0.9} \mathrm{Ti}_{1.1} \mathrm{O}_{4}$, formed a related structure, the outstanding features of which were greater edge sharing of the octahedra, and the formation of double tunnels to accommodate the sodium atoms (Mumme \& Reid, 1968).

Attempts to make additional compounds isomorphous with these were unsuccessful. ' $\mathrm{NaAlTiO}_{4}$ ' formed $\mathrm{Na}_{2} \mathrm{Ti}_{7} \mathrm{O}_{15}$ together with other unidentified phases (Wadsley \& Mumme, 1968) while ' $\mathrm{NaCoTiO}_{4}$ ' and ' $\mathrm{NaNiTiO}_{4}$ ' each formed a number of heteropolytypes containing more or less sodium, and having layer struc-
tures with close similarities to $\alpha-\mathrm{NaFeO}_{2}$ (Mumme, Reid \& Wadsley, 1968). In all of these there were obvious and gross changes of composition. $\mathrm{NaMnTiO}_{4}$, however, prepared by solid state reaction appeared to form a unique congruently melting single phase. The ideal composition of it, $\mathrm{Na}_{4} \mathrm{Mn}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$, was derived from this structural analysis.

Experimental

Well formed prismatic crystals of $\mathrm{Na}_{4} \mathrm{Mn}_{4} \mathrm{Ti}_{5} \mathrm{O}_{18}$ were originally prepared by melting the composition ' $\mathrm{NaMnTiO}_{4}$ ' at $1200^{\circ} \mathrm{C}$. The weight loss from 5 grams of sample, a mixture of TiO_{2}, sodium oxalate and MnO_{2} held in a platinum dish, was only 0.3% greater than the expected weight loss for total conversion of Mn^{4+} to Mn^{3+}.

The approximate lattice parameters were determined from single-crystal photographs and were used to index the powder diffractometer data, which had been col-

